Dozens of spacecraft, including orbiters, landers, and rovers, have been sent to Mars by the Soviet Union, the United States, Europe, and Japan to study the planet's surface, climate, and geology. As of 2008, the price of transporting material from the surface of Earth to the surface of Mars is approximately US$309,000 per kilogram.
Active probes at the Martian system as of 2011 include the Mars Reconnaissance Orbiter (since 2006), Mars Express (since 2003), 2001 Mars Odyssey (since 2001), and on the surface, Opportunity Rover (since 2004). More recently concluded missions include Mars Global Surveyor (1997–2006) and Spirit Rover (2004–2010).
Roughly two-thirds of all spacecraft destined for Mars have failed in one manner or another before completing or even beginning their missions, including the difficult late 20th century period of early pioneers and first-timers.
In the 21st century failures are much less common. Mission failures are typically ascribed to technical problems, such as failed or lost communications or design errors, often due to inadequate funding or incompetence for a given mission.
Such failures have given rise to a satirical counter-culture blaming the failures on an Earth-Mars "Bermuda Triangle", a Mars "Curse", or the "Great Galactic Ghoul" that feeds on Martian spacecraft. Some of the latest failures include Beagle 2 (2003), Mars Climate Orbiter (1999), and Mars 96 (1996).
Past missions
The first successful fly-by of Mars was on July 14–15, 1965, by NASA's Mariner 4. On November 14, 1971 Mariner 9 became the first space probe to orbit another planet when it entered into orbit around Mars.
The first objects to successfully land on the surface were two Soviet probes: Mars 2 on November 27 and Mars 3 on December 2, 1971, but both ceased communicating within seconds of landing. The 1975 NASA launches of the Viking program consisted of two orbiters, each having a lander; both landers successfully touched down in 1976. Viking 1 remained operational for six years, Viking 2 for three. The Viking landers relayed color panoramas of Mars and the orbiters mapped the surface so well that the images remain in use.
The Soviet probes Phobos 1 and 2 were sent to Mars in 1988 to study Mars and its two moons. Phobos 1 lost contact on the way to Mars. Phobos 2, while successfully photographing Mars and Phobos, failed just before it was set to release two landers to the surface of Phobos.
Following the 1992 failure of the Mars Observer orbiter, the NASA Mars Global Surveyor achieved Mars orbit in 1997. This mission was a complete success, having finished its primary mapping mission in early 2001. Contact was lost with the probe in November 2006 during its third extended program, spending exactly 10 operational years in space. The NASA Mars Pathfinder, carrying a robotic exploration vehicle Sojourner, landed in the Ares Vallis on Mars in the summer of 1997, returning many images.
The NASA Phoenix Mars lander arrived on the north polar region of Mars on May 25, 2008. Its robotic arm was used to dig into the Martian soil and the presence of water ice was confirmed on June 20. The mission concluded on November 10, 2008 after contact was lost.
Current missions
The NASA Mars Odyssey orbiter entered Mars orbit in 2001. Odyssey's Gamma Ray Spectrometer detected significant amounts of hydrogen in the upper metre or so of regolith on Mars. This hydrogen is thought to be contained in large deposits of water ice.
The Mars Express mission of the European Space Agency (ESA) reached Mars in 2003. It carried the Beagle 2 lander, which failed during descent and was declared lost in February, 2004.
In early 2004 the Planetary Fourier Spectrometer team announced the orbiter had detected methane in the Martian atmosphere. ESA announced in June 2006 the discovery of aurorae on Mars.
In January 2004, the NASA twin Mars Exploration Rovers named Spirit (MER-A) and Opportunity (MER-B) landed on the surface of Mars. Both have met or exceeded all their targets. Among the most significant scientific returns has been conclusive evidence that liquid water existed at some time in the past at both landing sites. Martian dust devils and windstorms have occasionally cleaned both rovers' solar panels, and thus increased their lifespan.
On March 10, 2006, the NASA Mars Reconnaissance Orbiter (MRO) probe arrived in orbit to conduct a two-year science survey. The orbiter will map the Martian terrain and weather to find suitable landing sites for upcoming lander missions. The MRO snapped the first image of a series of active avalanches near the planet's north pole, scientists said March 3, 2008.
The Dawn spacecraft flew by Mars in February 2009 for a gravity assist on its way to investigate Vesta and then Ceres.
Future missions
The Mars Science Laboratory, named Curiosity, will be launched in 2011. It is a larger and more advanced version of the Mars Exploration Rovers, with a movement rate of 90 m/h. Experiments include a laser chemical sampler that can deduce the make-up of rocks at a distance of 13 m.
The joint Russian and Chinese Phobos-Grunt mission to return samples of the Martian moon, Phobos, is scheduled for launch in 2011. In 2008, NASA announced MAVEN, a robotic mission in 2013 to provide information about the atmosphere of Mars. In 2018 the ESA plans to launch its first Rover to Mars; the ExoMars rover will be capable of drilling 2 m into the soil in search of organic molecules.
The Finnish-Russian MetNet mission will land multiple small vehicles on Mars to establish a widespread observation network to investigate the planet's atmospheric structure, physics and meteorology. A precursor mission using one or a few landers is scheduled for launch in 2009 or 2011. One possibility is a piggyback launch on the Russian Phobos-Grunt mission.
Manned mission plans
The ESA hopes to land humans on Mars between 2030 and 2035. This will be preceded by successively larger probes, starting with the launch of the ExoMars probe and a joint NASA-ESA Mars sample return mission.
Manned exploration by the United States was identified as a long-term goal in the Vision for Space Exploration announced in 2004 by then US President George W. Bush. The planned Orion spacecraft would be used to send a human expedition to Earth's moon by 2020 as a stepping stone to a Mars expedition. On September 28, 2007, NASA administrator Michael D. Griffin stated that NASA aims to put a man on Mars by 2037.
Mars Direct, a low-cost human mission proposed by Robert Zubrin, founder of the Mars Society, would use heavy-lift Saturn V class rockets, such as the Space X Falcon X, or, the Ares V, to skip orbital construction, LEO rendezvous, and lunar fuel depots. A modified proposal, called "Mars to Stay", involves not returning the first immigrant explorers immediately, if ever (see Colonization of Mars).
Astronomy on Mars
With the existence of various orbiters, landers, and rovers, it is now possible to study astronomy from the Martian skies. While Mars’ moon Phobos appears about one third the angular diameter of the full Moon as it appears from Earth, Deimos appears more or less star-like, and appears only slightly brighter than Venus does from Earth.
There are also various phenomena well-known on Earth that have now been observed on Mars, such as meteors and auroras. A transit of the Earth as seen from Mars will occur on November 10, 2084.
There are also transits of Mercury and transits of Venus, and the moons Phobos and Deimos are of sufficiently small angular diameter that their partial "eclipses" of the Sun are best considered transits (see Transit of Deimos from Mars).
Viewing
Because the orbit of Mars is eccentric its apparent magnitude at opposition from the Sun can range from −3.0 to −1.4. The minimum brightness is magnitude +1.6 when the planet is in conjunction with the Sun.
Mars usually appears a distinct yellow, orange, or reddish color; the actual color of Mars is closer to butterscotch, and the redness seen is just dust in the planet's atmosphere; considering this NASA's Spirit rover has taken pictures of a greenish-brown, mud-colored landscape with blue-grey rocks and patches of light red colored sand.
When farthest away from the Earth, it is more than seven times as far from the latter as when it is closest. When least favorably positioned, it can be lost in the Sun's glare for months at a time. At its most favorable times—at 15- or 17-year intervals, and always between late July and late September—Mars shows a wealth of surface detail to a telescope. Especially noticeable, even at low magnification, are the polar ice caps.
As Mars approaches opposition it begins a period of retrograde motion, which means it will appear to move backwards in a looping motion with respect to the background stars. The duration of this retrograde motion lasts for about 72 days, and Mars reaches its peak luminosity in the middle of this motion.
Historical observations
The history of observations of Mars is marked by the oppositions of Mars, when the planet is closest to Earth and hence is most easily visible, which occur every couple of years. Even more notable are the perihelic oppositions of Mars which occur every 15 or 17 years, and are distinguished because Mars is close to perihelion, making it even closer to Earth.
The existence of Mars as a wandering object in the night sky was recorded by the ancient Egyptian astronomers and by 1534 BCE they were familiar with the retrograde motion of the planet. By the period of the Neo-Babylonian Empire, the Babylonian astronomers were making regular records of the positions of the planets and systematic observations of their behavior. For Mars, they knew that the planet made 37 synodic periods, or 42 circuits of the zodiac, every 79 years. They also invented arithmetic methods for making minor corrections to the predicted positions of the planets.
In the fourth century BCE, Aristotle noted that Mars disappeared behind the Moon during an occultation, indicating the planet was farther away. Ptolemy, a Greek living in Alexandria, attempted to address the problem of the orbital motion of Mars. Ptolemy's model and his collective work on astronomy was presented in the multi-volume collection Almagest, which became the authoritative treatise on Western astronomy for the next fourteen centuries.
Literature from ancient China confirms that Mars was known by Chinese astronomers by no later than the fourth century BCE. In the fifth century CE, the Indian astronomical text Surya Siddhanta estimated the diameter of Mars.
During the seventeenth century, Tycho Brahe measured the diurnal parallax of Mars that Johannes Kepler used to make a preliminary calculation of the relative distance to the planet. When the telescope became available, the diurnal parallax of Mars was again measured in an effort to determine the Sun-Earth distance. This was first performed by Giovanni Domenico Cassini in 1672. The early parallax measurements were hampered by the quality of the instruments.
The only occultation of Mars by Venus observed was that of October 13, 1590, seen by Michael Maestlin at Heidelberg. In 1610, Mars was viewed by Galileo Galilei, who was first to see it via telescope. The first person to draw a map of Mars that displayed any terrain features was the Dutch astronomer Christiaan Huygens.
Martian "canals"
By the 19th century, the resolution of telescopes reached a level sufficient for surface features to be identified. In September 1877, a perihelic opposition of Mars occurred on September 5. In that year, Italian astronomer Giovanni Schiaparelli used a 22 cm telescope in Milan to help produce the first detailed map of Mars. These maps notably contained features he called canali, which were later shown to be an optical illusion.
These canali were supposedly long straight lines on the surface of Mars to which he gave names of famous rivers on Earth. His term, which means "channels" or "grooves", was popularly mistranslated in English as "canals".
Influenced by the observations, the orientalist Percival Lowell founded an observatory which had a 300 and 450 mm telescope. The observatory was used for the exploration of Mars during the last good opportunity in 1894 and the following less favorable oppositions. He published several books on Mars and life on the planet, which had a great influence on the public. The canali were also found by other astronomers, like Henri Joseph Perrotin and Louis Thollon in Nice, using one of the largest telescopes of that time.
The seasonal changes (consisting of the diminishing of the polar caps and the dark areas formed during Martian summer) in combination with the canals lead to speculation about life on Mars, and it was a long held belief that Mars contained vast seas and vegetation. The telescope never reached the resolution required to give proof to any speculations. As bigger telescopes were used, fewer long, straight canali were observed. During an observation in 1909 by Flammarion with a 840 mm telescope, irregular patterns were observed, but no canali were seen.
Even in the 1960s articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars. Detailed scenarios for the metabolism and chemical cycles for a functional ecosystem have been published.
It was not until spacecraft visited the planet during NASA's Mariner missions in the 1960s that these myths were dispelled. The results of the Viking life-detection experiments started an intermission in which the hypothesis of a hostile, dead planet was generally accepted.
Some maps of Mars were made using the data from these missions, but it was not until the Mars Global Surveyor mission, launched in 1996 and operated until late 2006, that complete, extremely detailed maps of the martian topography, magnetic field and surface minerals were obtained. These maps are now available online, for example, at Google Mars.
No comments:
Post a Comment